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Abstract

1

Several scheduling strategies are analyzed in order to determine the most efficient
means of scheduling aircraft when multiple runways are operational and the airport is

operating at different utilization rates. The study compares simulation data for two
and three runway scenarios to results from queuing theory for an M/D/n queue. The

direction taken, however, is not to do a steady-state, or equilibrium, analysis since this

is not the case during a rush period at a typical airport. Instead, a transient analysis of

the delay per aircraft is performed. It is shown that the scheduling strategy that reduces

the delay depends upon the density of the arrival traffic. For light traffic, scheduling
aircraft to their preferred runways is sufficient; however, as the arrival rate increases, it

becomes more important to separate traffic by weight class. Significant delay reduction

is realized when aircraft that belong to the heavy and small weight classes are sent to

separate runways with large aircraft put into the "best" landing slot.

Introduction

The analysis of aircraft scheduling techniques for airports with multiple runways are becom-

ing more important with the evolution of new airport designs, such as Denver International

(DIA), that have the capability to land several aircraft independently on several runways.

Therefore, new techniques for scheduling to multiple runways are needed in order to improve

upon the traditional First Come First Serve (FCFS) technique generally employed. With

the advent of the Center TttACON Automation System (CTAS), air traffic controllers will

have a tool that gives them accurate aircraft state information that will assist them in their

scheduling duties [1]. The intent of this paper is to present and compare several scheduling

methods in order to show the best means to reduce the delay per aircraft.

In a multiple runway airport, traffic from different directions is assigned a "preferred"

runway based upon the geometric relation of the approach geometry to a runway. Previous

efforts by Vandevanne [2] have shown that significant delay reduction is possible for multiple

runways if the aircraft are allowed to crossover without penalty. Using steady-state queuing

theory, one should realize an improvement in delay by a factor of approximately 1/n for n

runways as compared to a single runway case with 1 - 1/n percent of the aircraft switching

from their preferred runway. A "delay threshold" can be added in order to reduce the

number of crossovers. The delay threshold is a lower bound upon which the delay on the

alternate runway must be reduced in order for the aircraft to cross to that runway. As a

result, there is a drop in the number of crossovers and a corresponding increase in the delay.

The approach taken in this paper is to study different techniques for scheduling aircraft

to multiple runways. Numerical simulation is used to determine the effectiveness of several

simple runway allocations. These results are compared to results from queuing theory.

Because the typical arrival rush at an airport is fairly short, we are interested in looking at



the transient state of the queue and how the waiting time or delay builds-up during a rush

period. This simulates the queuing dynamics during a rush period at a typical airport which

is initially operating with light arrival traffic. It is shown that the best method of allocating

runways when the airport is operating either near or above capacity is to separate the heavy

and small aircraft as much as possible. However, if the traffic is light, it is sufficient to land

the aircraft on their preferred runways.

2 The Scheduling Problem

The aircraft scheduling problem can be defined as a procedure which is "to plan automat-

ically the most efficient landing order and to assign optimally spaced landing times to all

arrivals, given the times the aircraft are actually arriving at the Air Route Traffic Control

Center (ARTCC) " [1]. This definition may sound modest, but there are some underlying

attributes of the scheduling problem that make it very difficult. First is that the arrival

times of the aircraft into the system are random. Theoretically and practically, the arrival

times are modelled as a Poisson process. In practice, if one were to observe arrivals at

an airport for a day, one would see that the number of arrivals varies throughout the day.

There are periods of time where the arrival traffic is "light" and periods where the incoming

traffic is so heavy that the airport is operating near or above capacity. The arrivals are still

consistent with the Poisson process, but with a time varying arrival rate.

A practical factor which is of extreme importance in scheduling is classification of

aircraft into different weight classes, and the minimum separation between them. In practice

we generally, deal with three weight classes which we describe as heavy, small, and large.

The Federal Aviation Administration (FAA) has specified a "separation matrix" which gives

required minimum distance separations between these classes of aircraft. These separations

arise from the consideration of wake vortices, speed differences, etc. The nominal matrix

used is given below (with distances in n. mi.).

H L S

H 4 5 6

L 3 3 4

S 3 3 3

(1)

This matrix changes depending upon winds, weather, etc. To find the proper separation

for a pair of aircraft, one simply goes to the appropriate row for the leading aircraft then to

the column for the weight class of the trailing aircraft. One converts the distances to times

using the approach speeds of the aircraft.



3 Analytical Models

In order to predict the amount of delay that an aircraft can expect for a given traffic

mix, arrival rate, and airport capacity, two standard queuing models are considered. The

first model has deterministic service times, and the second considers service times that are

exponentially distributed. Rather than restricting ourselves to a steady-state analysis, a

study of the transient queue dynamics is performed. The motivation for doing a transient

analysis is that in actual traffic the peak arrival rates may be short compared to the time

required for the system to reach steady- state. The real benefits of an efficient scheduling

technique are realized when the arrival traffic is heavy, and there are times where the peak

arrival rate of aircraft is greater than the number that are able to land in a given time period.

Secondly, the-arrival rate preceding the rush period is usually low enough that aircraft are

sufficiently spaced, and the method of landing aircraft on their preferred runways will be

more than adequate since aircraft are typically not delayed due to the large inter- arrival

times between aircraft.

3.1 Deterministic Service Times

In constructing a mathematical model for the scheduling problem, one needs to make some

simplifying assumptions. The first is that the arrivals are to be modelled according to

a homogeneous Poisson process with an arrival rate, )_. The Poisson process has a mean

number of arrivals in the time period It, t + At] equal to hat. Furthermore, the inter-arrival

times of the aircraft have an exponential distribution with a mean of 1/),. It is further

assumed that each server has a constant service time, Ts. This queuing system is then said

to be M/DIn [3], where the "M" denotes that the inter-arrivai times are "Markovian" or

"memoryless," the "D" denotes that the service times are "deterministic" or constant, and

n servers are operating in parallel. All aircraft will share a common queue, unless specified

otherwise.

The service time may be taken to be constant by averaging the actual separation times

within the separation matrix. This may be done since the traffic mix and the separation

matrix are known quantities. By assigning a fixed service time to all aircraft in this manner,

it is assumed that any delay results from the randomness of the arrival times. In order to

calculate a service time (and hence a runway capacity) from the separation matrix one

only needs to know the traffic mix and the separation matrix. The average service time is

Ts = PTSPm, Pm = [PH PL Ps] T is the traffic mix (PH, PL, and Ps are the probabilities

that the aircraft is a heavy, large, or small respectively), S is the separation matrix. Let

# represent the runway capacity. The capacity of a single runway is then # = 1/Ts. For

example, if the traffic mix is Pm= [.2.7.1] T, and the aircraft have a common landing

speed of 150 knots, then # = 43.5 ac/hr and T, = 82.8 sec. For analysis purposes, using

3



this constantT_ allows us to preserve the effects of different traffic mixes upon the delay in

the system while still using the simplifying assumption of a constant deterministic service.

An alternate approach which utilizes random service times is discussed in the next section.

Whereas capacity is affected by the order of arrivals of various weight classes, one can safely

assume that no major re-ordering of the landing times is possible (or desired.) To understand

how the landing order affects capacity, consider landing all small aircraft, followed by the

large and then the heavy aircraft. This will maximize the capacity, but will likely result in

large delays for a large percentage of the aircraft in the stream [4].

In order to analyze the delay build-up during a rush period, one needs to study the

transient probabilities of the queuing process. The time-varying equations are taken from

Tijms [5]. They are based upon the following observation: a customer in service at time t
will have left service at time t + T,. The customers in the system at the time t + Ts will be

those that entered during the increment Ts as well as those that were in the queue at time

t.

Define A(Ts) to be the number of arrivals in the interval [t, t+Ts] (because we consider

a Poisson process with a constant rate, there is no time dependency). We write the number

of arrivals as a function of the length of the interval since the Poisson process has the

following property: for 0 < s < t the random variable A(t)-A(s) is the number of arrivals

in the interval [s, t], which may be written as A(t- s) [6]. Furthermore, let N(t) be the

number in the system at time t, and Pj(t) = P(N(t) = j) denote the probability that j

customers are in the system at time t. We will condition on the number in the system at

time t. The event that there are j aircraft in the system is a union of the events that there

are j arrivals when either the servers are either full, empty or less than full and the queue

is empty or there are j - 1 arrivals when there is a queue of length 1, etc. Using this detail

we have the following expression for the number of aircraft in the system

Pj(t + Ts) = P(A(T,) = jlN(t) = O)Pn(t) U... kJ P(A(Ts) = jlN(t) = n)P,,(t) u (2)

P(A(T_) = j- llN(t) = n + 1)Pn+l(t) U...U
.

P(A(T_) = 0IN(t) = j + n)Pj+n(t)

Also, note that the number of arrivals in the interval It, t + Ts] and the number in the queue

are independent events. Thus, for any m and k, the conditional probability above becomes

P(A(Ts) = m, N(t) = k)

P(A(T,) = mlN(t ) = k) = P(N(t) = k)

P(A(Ts) = m)P(N(t) = k)

P(N(t)=k)

= e-:_T,(_)_T')m
m!

= P(A(Ts)= m)

(3)

The probability given in Equation 3 is simply the probability that there are m Poisson

arrivals in an interval of length Ts. Substituting Equation 3 into Equation 3 and simplifying



yields

_-, (AT,)j '_+J (AT,)j-k+,_

Pj(t + Ts) = k=oZ"Pk(t) e-aT" j----'if--.+ k=n+l_ Pk(t)e-_T° (j -- k + n)!' j = 0, 1,2,... (4)

This gives us an infinite set of equations that can be solved at discrete times. Assuming that

the queue is initially empty, this set of equations can then be re-written in the matrix-vector

form /5(t + Ts) = F/5(t). The vector/5 is the probability vector, where the jth element

is the probability that j - 1 customers are in the system. This equation can be solved by

setting t = kT,, and using the initial condition P0 =/5(0) = [1 0 0 0 : ...]T. Re-writing the

probability vector, we get _P(k) = P(kT,) = [P0(k) Pl(k)...]. Hence, Eq. 4 can be written

as the infinite dimensional difference equation,

P(kTs) = FP((k- 1)Ts)

1 0 0

_T, 1 o

AT, 1

** ".. ".

where F is given below for the n = 2 case as

1 1

AT, AT,

F e -:_T° _-: 2! 2.1

:

The solution to this set of equations is

/5(kT,) = Fk /5o

(5)

(6)

(T)

This set is solved approximately by choosing a sufficiently large dimension of F such that

the significant probabilities of the system are captured.

After solving for the time-varying probabilities, the mean number in the system at

any time increment k is calculated. The mean number in the system is defined as re(k) =

_°=ojPj(k ). The mean number in the system may be broken up into two components,
those found in service at time-increment k, ms, and those in the queue awaiting service,

mQ. Hence, re(k) = ms(k) + mQ(k), where mQ(k) is the mean number in the queue and

m,(k) is the mean number in service. The mean number in service can be found in Cooper

[3] to be
n--1 oo

_ jPj(k) + n __Pj(k) (S)
j=0 j=n

The first summation in Eq. 8 arises from the recognition that if the number of customers

in the system is less than the number of servers, then all customers are being served. The

second summation exists due to the realization that if there are more customers in the

system than there are servers, then all servers will be busy. The resulting mean number in

the queue is then
OO

mQ(k) = _-_(j- n)Pj(k) (9)
j=n
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UsingEquation 9 and replacing oo by NF, where NF is the dimension of F used for cal-

culation, the mean number in the queue can be calculated. The expected waiting time or

delay as a function of time can be found by simply applying Little's Formula [3]. Little's

Formula provides a simple relation between the waiting time in the queue and the number

in the queue. Mathematically, Little's Formula is L = AW where L is the length of the

queue, A is the arrival rate of customers into the system, and W the waiting time in the

queue. The waiting time in the queue then becomes

NF

1 1 __,(j_ n)Pj(k) (10)wq(k) = XmQ(k)= X
3-_n

3.2 Exponential Service Times

A second model that has been applied to analyze the aircraft scheduling problem is one

where the service times are exponentially distributed with a mean equal to the service time

calculated from the separation matrix. A queue that has Poisson arrivals, exponential ser-

vice times, and n servers is referred to as an M/M/n queue [3]. The golomogrov differential-

difference equations, which describe a birth and death process, were numerically solved to

get the probabilities for an n server queue with a constant arrival rate Aj = A for all j and

service rates

j/z j=0,1,...,n-1 (11)I_J = ntz j >_ n

The service rate denotes how quickly customers would complete service in a specified period

of time. The birth and death differential-difference equations are then

Pj(t) = Aj-lPj-l(t)-(,kj + #j)Pj(t) + #j+,Pj+l(t) (12)

Since this is an infinite set of first-order differential equations, we can write this in the form

J_(t) = GP(t), /5(0) = P0. The matrix G in this case is a tri-diagonal matrix of the form

(for r, = 2)
- -,_ _ 0 0 0

-(_ + _) 2# 0 0 (13)
G= 0 A -(A+2g) 2g 0

." °,. "., "., ",,

The elements Pj(t) of the vector P(t) are simply the probabilities that j - 1 customers

are in the system at time t. Again, we are only able to approximate the infinite set of

differential-difference equations by a finite set when solving the system numerically. Hence,

one needs to select the dimension of G large enough that the important features of the

queuing dynamics are realized.

The solution to the differentialequation/ (t) = GP(t), = P0 is

P(t) = (14)



Oncethe probabilitiesare foundaccordingto Eq. 14, the meannumberin the queueand
hencethe meanwaiting time in the queueare foundusingEq. 10and replacingk by t.

One can see in Figure 1 that the waiting time in the queue for the M/M/2 queue is almost

twice that when compared to the M/D/2 queue for the same service time, arrival rate,

and number of servers. The reason for this difference is attributed to the large standard

deviation of the exponential distribution. Consider an exponential distribution with rate a.

The mean is then 1/a and the variance is 1/a 2. This results in a large la deviation, where

we would expect to see the service times between 0 and 2/a. Note for a purely deterministic

service time, the variance is zero. If we consider the service times to determined by the

separation matrix, the variance in arrival traffic can be easily computed. After converting

the separation matrix from distances to speeds using a common approach speed of 150 kts

and the traffic mix above, the standard deviation is found to be 19.3 seconds, compared

to 82.8 seconds for the exponential distribution. The large variance of the exponential

distribution introduces a much wider range of service times than what occurs in practice.

The effect of these service times is to introduce additional delay into the system that is not

present. Hence, the deterministic service time queue better suits our results.

4 Comparison of Runway Allocation Strategies

Due to the complex nature of scheduling arrival aircraft, simulation provides a valuable tool

to determine the feasibility of a particular scheduling algorithm. In this section, we discuss

the merits and drawbacks for several runway allocation methods. First, the two runway

allocation problem will be discussed, followed by the three runway problem. Three different

traffic densities will be analyzed for each problem: a period of light traffic (two runway case

only), a period of moderately heavy traffic where the airport is operating near, but below

capacity, and a period where the traffic is heavy enough that the airport is operating above

capacity. The purpose is to show that selection of a given runway allocation method varies

with .the arrival rate of aircraft into the airport.

4.1 Two Runway Allocation Problem

The two runway problem is one that is quite common at many airports which operate at

least two independent runways. Runways that operate independently of one another have

sufficient separation between their center lines such that aircraft landing simultaneously do

not have to be "staggered."

It is assumed for all scheduling strategies that the aircraft arrive from two different

directions. Each arrival stream's estimated times of arrival (ETAs) are modelled by a
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Poissondistribution with a mean of A aircraft per hour per runway, which gives a total

arrival rate of 2A ac/hr using the reproductive property of the Poisson process. Each arrival

direction has a "preferred" runway that an aircraft desires to land on. Due to the common

arrangement of parallel runways, we will nominally call the runways "left" and "right"

or "L" and "R'. The arrival direction, and hence the preferred runway, was determined

by a random draw from a standard normal distribution. The capacity of each runway is

approximately 43.5 aircraft per hour using the separation matrix and (for simplicity) a

common approach speed of 150 knots calibrated airspeed. The traffic mix is assumed to

consist of 70% large aircraft, 20% heavy, and 10% small. The performance index to be

considered is the average delay of each aircraft, since minimizing the delay per aircraft

results in a maximum throughput. The delay per aircraft is measured with respect to an

earliest estimated time of arrival (ETA), such that an aircraft that arrives at its "fast" ETA

has zero delay. It is further assumed that each aircraft can be expedited by 60 seconds

(i.e. ETA/_ot = ETA - 60) and slowed down as much as needed to meet the minimum

spacing requirements of the separation matrix. The flight time to both runways is assumed

to be identical. Furthermore, the first aircraft landing on each runway is constrained to

land at its nominal time of arrival in order to prevent negative landing times. The results

presented are the average for "batch" runs comprised of 500 different streams that are each

90 minutes long. All scheduling strategies for a given arrival rate use the same traffic.

4.1.1 Light Traffic

For the light traffic case, the total arrival rate is taken to be 32 ac/hr (or 16 ac/hr/runway).

In queuing theory, the "utilization rate" is used to demonstrate the how "busy" a system

is [3]. The utilization rate is defined to be p = _-_, where p is the utilization rate, A is

the arrival rate, n is the number of servers, and/z is the service rate. If we substitute the

service time for the service rate, the utilization becomes p = ___aT.Therefore, for this case of
n

light traffic, p = .37, which means that the runways will be occupied 37% of the time. We

compared three means of allocating runways for the arrival traffic. The first was to land

each aircraft on its preferred runway. This is the easiest scheduling algorithm to implement,

since no decision is made to cross runways. Furthermore, this is a baseline that allows us

to later show improvements in delay as compared to this algorithm. By constraining the

aircraft to land on their preferred runways, the queue is considered as two separate queues,

each feeding a particular service. This is identical to a supermarket with two checkouts,

each with its own line, where the customers, upon entering the line, cannot go to another

register. The second is to allow an aircraft to switch from its preferred runway whenever

the aircraft's delay on the alternate runway is less than its delay on its preferred runway.

This queue is unlike the one above in that there is only one line, but the customer chooses

the server that becomes open the soonest (i.e. the baggage check-in counter at the airport.)

This plan will be referred to as unconstrained crossovers. The final allocation strategy is

to land the heavy and small aircraft on runways which are designated for this weight class,

and to place the large aircraft on the runway where the delay for it is the smallest. The



Allocation Strategy Ave Delay, min/ac Std Dev. min/ac

No Crossovers 0.4725 0.2022

Unconstrained Crossovers 0.1847 0.0963

Separate Heavies and Smalls 0.2359 0.1080

Table 1: Light Traffic Comparison for 2 Runways

results of these three approaches axe given in Table 1. From Table 1 we conclude that an

aircraft is likely to be expedited, even in the case where the airplane cannot cross runways

(recall that 60 seconds of delay corresponds to the aircraft arriving at its nominal ETA).

The improvements made by allocating runways are 50% to 65% percent better. However,

from an operational point of view, there is no real advantage for optimizing the landing

sequence in order to reduce the delay per aircraft since the delay is already small. This is

due to the fact that the average separations between arrivals are large, hence there is little

tendency for bunching to occur.

In order to get a feel of how accurate the numbers for the no crossover and the unlimited

crossover cases, we can compare them to an M/D/1 and an M/D/2 queue respectively. In

order to calculate the expected delay per aircraft over a given time period, the "average"

value of Equation 10 is needed. To calculate this, note that the waiting time is constant

over a service period. Therefore, the average value of the expected waiting time curve is

then N

1 jfoT 1W = W(t)dt = W(k) (15)
k=O

Using Equation 15 for an M/D/1 queue with an arrival rate of 16 at/hour and a service

time of 82.8 sec, the average delay is found to be 0.3955 min/ac, which agrees well with

the no crossover case in Table 1. The unlimited crossover case shows the same trend. The

predicted delay using an M/D/2 queue is 0.1174 min/ac while the simulation produced

a delay of 0.1847 min/ac. Since the differences between the simulation and the predicted

restflts axe nearly identical, these-quantities appear to give a suitable representation of what

can be expected when the traffic is light.

4.1.2 Moderate Traffic

The case where there is moderately heavy traffic allows us to investigate into what happens

when the airport is operating under a fairly high arrival rate, but is still not at its capacity.

This allows for fairly tight bunching to occur as well as periods where the traffic may be

light for several minutes. It is assumed that the total arrival rate is 72 ac/hr, putting the

airport at about 84% capacity. Results are summarized in Table 2.

10



Allocation Strategy Ave Delay, min/ac % Crossovers

No Crossovers 2.5161 0

Unconstrained Crossovers 1.3402 44.85

Constrained Crossovers 1.4712 23.12

Separate Heavies and Smalls 1.3140 50.17

Table 2: Moderate Traffic Comparison for 2 Runways

Four different scheduling algorithms were investigated. The first method is to again

land each aircraft on its preferred runway (i.e. no crossovers allowed). This serves as a

baseline strategy used determine how much improvement in delay can be obtained. The

second strategy allowed an aircraft to cross from its preferred runway to the alternate run-

way if the aircraft could land at an earlier time on the alternate. The first two strategies

correspond to the analytical models that are considered. Two additional algorithms also

are considered. One of the methods attempts to reduce the number of crossovers. Because

crossovers increase the workload of the controllers, one wants to be able to reduce delay

without imposing a higher workload on them. Therefore, this particular algorithm permit-

ted the aircraft to crossover to the alternate runway if one of two conditions were satisfied:

a) the aircraft's delay on the alternate runway was less than on the preferred and the

sequence was defined to be "favorable" or b) the aircraft's delay on the alternate runway

was less than that on its preferred runway by some predetermined amount. The second

alternative method is to see what improvements in delay may be realized by separating

some of the traffic so it does not interact. Upon inspection of the separation matrix, it is

evident that the element with the largest value is the case where a small aircraft trails a

heavy. The goal is to then eliminate this sequence of aircraft. Thus, the strategy is to send

the heavy aircraft and small aircraft to separate runways and to then schedule the large

aircraft to the runway where its delay was lowest.

The first scheduling strategy employed was to restrict each incoming aircraft to land

on its preferred runway. This is employed as a baseline in order to find improvements in the

runway balance (i.e. are the same amount of aircraft landing on each runway) and in the

delay per aircraft. The aircraft, as stated above, entered from the appropriate direction, and

then were scheduled to the corresponding runway. For 500 runs of 108 aircraft, the mean

delay was 2.59 min/ac. The average number of aircraft landing on each runway was 54.27

and 53.73 on the left and right respectively. Note that the amount of traffic is nearly evenly

split between the runways. This is expected since the runway assignment is based upon the

sign of a draw from a normal distribution. For analytical purposes, this is modelled by an

M/D/1 queue with the arrival rate equal to 36 ac/hr and a constant service time of about

83 seconds. The expected delay curve is shown in Figure 2. Using Eq. 15, we find that the

average value of the waiting time is 2.53 min. This is in agreement with the results of the

simulation.

The second strategy was to allow the aircraft to crossover when the delay on the

11



3.5

3

2.5

¢.-

E
2

E

¢-
:_ 1.5

0.5

0
0

Arrival Rate = 36 ac/hr !

0.5 1
Time, hrs

.5

Figure 2: Mean Waiting Time for M/D/1 Queue with Moderate Traffic

12



alternaterunwaywaslessthan on the preferred. This casewasstudiedby Vandevanne
[2] usingtraffic statisticsfrom the Dallas-FortWorth airport. Vandevannestudiedthe
reductionin delayrelative to the preferredrunwaycasethat wasdiscussedabove. His
analysislookedat the expectedwaiting time in the steadystate for M/DIn queuesas
comparedto an M/D/1 queues.Heshowsthat the delayfor the n runway case is reduced

by a factor of approximately 1In as compared to the single runway case. Using this analysis

as a starting point, a curve showing how the relative delay evolves as a function of time was

generated. Figure 3 shows that the delay of an M/D/2 queue relative to an M/D/1 queue

with the same utilization. The arrival rate used is the same in this section for both queue

types. Calculating the average value of the curve in Figure 3, an improvement of about

52% would be expected by allowing an aircraft to choose the runway with the lowest delay

for it.

Simulation of a batch run of 500 streams shows that the average delay is halved as

compared to the no crossover case. The delay per aircraft turns out to be 1.34 min/ac with

an average of 53.90 aircraft landing on the left runway and 54.10 aircraft landing on the

right. This shows that the effect of crossing runways in order to minimize the individual

delay also will tend to balance the runway throughput. The average delay that one expects

to see can be found using Eq. 15 derived above. Using this we find that the average delay

should be about 1.31 min/ac. Furthermore, the simulated delay for the unlimited crossover

case is 52% that of the no crossover case. Vandevanne also states that about one- half of the

traffic will cross runways in order to reduce their delay. Our simulation shows that this is

nearly the case, as 44.85% of the traffic switched runways in a single stream of 108 aircraft.

The reason for the large number of crossovers can be attributed to the fact that an aircraft

has a 50 percent probability of having its preferred runway be the one for which its delay

is minimized.

The next approach that was implemented placed restrictions on when an aircraft could

crossover. An aircraft was allowed to crossover if one of the following logic statements were

true: a) the aircraft had a lower delay on the alternate runway and the aircraft formed a

"fa_0rable" sequence or b) the scheduled time of arrival (STA) on the alternate runway is

less than the STA the on the preferred runway by a fixed amount (taken to be 60 seconds).

A favorable sequence is defined as a sequence that is not one of the following pairs: {heavy,

large}, {heavy, small}, or {large, small}. This essentially prohibits the use of the elements

in the separation matrix that are above the diagonal. These are the elements that have

the largest value, hence adding the most delay to the landing sequence. The purpose of

having the "OK" logic is that if the improvement is significant enough, it will offset any

penalty that may result from an unfavorable sequencing. Simulation showed that the delay

per aircraft was 1.47 min./ac and each runway landed an average of 54 aircraft. Similar

to the unlimited crossover case, the runways are balanced, but the delay is increased by

about 8 seconds per aircraft on each runway. The increased delays can be attributed to

the fact that there are fewer crossovers, hence there are aircraft that are not landing in

their "optimal" slot. Furthermore, there are still instances where the sequencing is not
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favorable as we have defined it, hence the larger separations on average will require larger

delays. However, the number of runway crossings dropped to 23.12% of the traffic. The

next scheduling algorithm studied was to split the heavy and small aircraft and to schedule

them to separate runways. The large aircraft into the stream are subsequentially scheduled

to the runway which minimizes the delay for the particular aircraft. The small aircraft were

sent to the left runway and the heavies were sent to land on the right runway. The large

aircraft go to the runway where the delay for that particular aircraft is the lowest. If the

delay is the same on each runway for an aircraft then it lands on the runway where the

sequence is defined as favorable. Here, we are trying to avoid putting the aircraft behind a

heavy, when it could be placed behind a small or large aircraft. However, if there still is no

preference after this test (e.g. a large aircraft landed on each runway preceding the current

large aircraft), then the aircraft either goes to the runway where there are fewer aircraft

or to the ruItway where the last aircraft was not scheduled (e.g. if the previous aircraft

landed on the right runway, then land on the left runway). The study of 500 runs shows

that the average delay per aircraft is 1.3140 min/ac The average runway throughputs axe

55.85 aircraft landing on the left and 52.15 on the right. In both cases, the improvement

in delay is significant as compared to the no crossover case, and a modest improvement

over the unlimited crossover case. The improvement can be attributed to an increase in

the capacity for each of the runways. Since heavy and small aircraft are not in the same

stream, the large separations between these weight classes are eliminated, hence the capacity

increase. This method, however, had the largest number of crossovers with about 50.17%

of the traffic switching runways. The reason for this is simple. Since we know that every

aircraft entering the system wants to land on a preferred runway, it stands to reason that

there is a 50% probability that the assigned runway for each heavy and small aircraft is

its preferred runway. Therefore, one-half of the aircraft that comprise these weight classes

have to change runways to land on the appropriate runway. Furthermore, one-half of the

large aircraft will switch in order to reduce delays based upon the argument given in the

section above.

4.1.3 Heavy Traffic

This section addresses the problem of what occurs in the two runway case when the airport

is operating above capacity. An interval of 90 minutes is being considered, although in

practice an airport never operates under such conditions for periods this long. The reason

for choosing such a long interval is to keep continuity with the light and moderate traffic

densities discussed above. The arrival rate is 96 ac/hr, and the average delays are for 500

runs of 144 aircraft. The scheduling algorithms are the same as considered for the moderate

traffic. The results for the heavy traffic case are summarized in Table 3.

The no crossover case is again the worst case scenario to which all other scheduling

methods are compared. The average delay expected from an M/D/1 queue with an arrival
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Allocation Strategy Ave Delay, min/ac Crossovers %

No Crossovers 8.5629 0

Unconstrained Crossovers 6.8800 49.24

Constrained Crossovers 7.0772 26.04

Separate Heavies and Smalls 6.1792 49.94

Table 3: Heavy Traffic Comparison for 2 Runways

rate of 48 ac/hr and an service time of 82.8 sec is 7.4027 min/ac. The simulation had an

average delay of 8.5629 min/ac. The difference between the expected and the simulated

delay is attributed to the approximation of the infinite-dimensional system by one that

is finite. To begin with, since the arrival rate is larger than the service rate, the system

will never reach steady-state. This means that if the system were to run for an infinite

amount of time, the queue length would become infinite. Therefore, by estimating the

infinite-dimensional system with one that is finite, large errors have been introduced in

the expected waiting time calculations. However, what we are really looking for here is

the improvement in delay relative to the M/D/1 case; therefore, based on our previous

experience, we would expect to see the same relative improvement below.

In the unconstrained crossover case, an improvement of 18% in the delay should be

realized when compared to the no crossover case. The expected delay found using the

M/D/2 queue is 6.1517 min/ac. The simulation returned a result of 6.8800 min/ac, which

is almost a 20% improvement over the no crossover case. Figure 4 shows how delay is

reduced relative to the single runway case. Although the computed delays axe not close to

the expected delay from queuing theory, the relative improvement is reasonably close.

The next scheduling approach is the constrained crossover case discussed in the section

above. As expected, the average delay is higher than that for the unlimited crossover case.

This strategy had a delay 7.0772 min/ac as compared to 6.8800 min/ac for the unlimited

crossovers. The number of crossovers as compared to the moderate traffic is also slightly

higher. With the increase in traffic, 26% of the aircraft switched runways. This increase is

associated with the decreased mean separation in the ETA's of the aircraft.

The final allocation process was to separate the heavy and small traffic so that each

lands on separate runways. The delay was found to be 6.1792 min/ac. This is significantly

less than the no crossover case. In fact, this demonstrates the importance of keeping heavy

and small aircraft on separate runways when the traffic is very heavy. The reduction in

delay is attributed to the fact that the heavy-small sequence is avoided. Furthermore, the

large aircraft, which make up 70% of the total traffic, land wherever the delay is minimized,

hence this likely accounts for a part of the reduction in the delay. Approximately 49% of

the traffic switched runways.

16



0.86

0.85

0.84

0.83

0.82

0.81

0.8

0.79

0.78

0.77

o

!
.

iiiii
I I

0.2 0.4 0.6 0.8 1.2 1.4 1.6
Time, hrs

Figure 4: Ratio of 2 Runway Delay Relative to Single Runway for Heavy Traffic

1T



Allocation Strategy Ave Delay, min/ac % Crossovers

No Crossovers 2.7008 0.0

Unconstrained Crossovers 0.9249 59.38

Separate Heavies and Smalls 0.9399 66.59

Table 4: Moderate Traffic Comparison for 3 Runways

4.2 Three Runway Allocation Problem

The three runway case is considered since many larger airports such as Dallas-Fort Worth

and Denver International have more than two runways that may be used simultaneously.

Only heavy and moderate traffic are considered as only minimal benefits are realized from

optimizing runway allocations for fight traffic. The most practical means of allocating

runways in the light traffic case is to land each aircraft on its preferred runway. The

underlying assumptions for the three runway case are basically the same as for the two

runway case. The three runways are labelled as "R", "L", and "C" to denote the right, left

and center runways respectively. The preferred runway is chosen from a uniform distribution

instead of a normal distribution as in the two runway case. This is done to take advantage

of the symmetry of the uniform distribution.

4.2.1 Moderate Traffic

The case of a moderate traffic flow into the airport is discussed first. Three scheduling

strategies are examined. The first is the no crossover case, where each aircraft is assigned

to its preferred runway, and the unlimited crossover case where an aircraft is free to switch

runways whenever its delay is lower on the alternate runway than the delay on the preferred

runway. The third way of scheduling is to land heavies and smalls on separate runways,

while_ assigning the large aircraft to any of the three. This is a direct descendant of the

tworunway strategy where the heavy and small aircraft were landed on separate runaways.

Furthermore, it is assumed that the total arrival rate is 108 ac/hr and the runway capacity

is 130 ac/hr. Results are summarized below in Table 4.

The no crossover case is again compared directly to an M/D/1 queue that has an arrival

rate of 36 ac/hr and a service time of 82.8 sec. As such, we expect a delay of 2.5247 min/ac.

Simulation, however, yielded a delay of 2.7008 min/ac. The difference is attributed to an

uneven distribution of aircraft on each runway as well as not enough data in the sample

space to get adequate convergence. The unrestricted crossover case performed as expected.

Figure 5 shows the ratio of waiting time for an M/D/3 to an M/D/1 queue over time. Note

that the delay for a single server queue increases faster than for the three server queue given

the same utilization. It is expected that the delay will be 35% of the no crossover delay
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for 90 minutes of traffic. The delay for the unlimited crossover case is 0.9249 min/ac. The

delay that one would expect from the M/D/3 queue is 0.8544 min/ac. Again, the delay is

higher than what is expected, but still is 34% of the no crossover delay. One would expect

to see 2/3 of the traffic crossover to an alternate runway since the probability of an aircraft

of having its preferred runway be the runway which has the lowest delay is 1/3. The actual

crossover rate was 59.4%, less than the 67% that would be anticipated. Yet, this is also

consistent with what was observed for the two runway/moderate traffic case done above.

The next allocation method is to land the heavy aircraft and the small aircraft on their own

runways. Then the large aircraft are assigned to any of the 3 runways. To be consistent

with the allocation strategy for the two runway case, the large aircraft landed on the runway

that minimized the delay for an individual aircraft. Simulation yielded a delay of 0.9399

min/ac with 66.6% of traffic crossing over. This is similar to what was observed on the two

runway case with moderate traffic, but with a very small increase in the delay.
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Allocation Strategy Ave Delay, min/ac % Crossovers

No Crossovers 8.7364 0.0

Unconstrained Crossovers 6.4254 65.69

Separate Heavies and Smalls 4.9582 66.79

Table 5: Heavy Traffic Comparison for 3 Runways

4.2.2 Heavy Traffic

For heavy traffic, the arrival rate was increased to 144 ac/hr for a duration of 90 minutes.

The three strategies employed are the same as for the moderate traffic. Again, comparisons

are made to results obtained using queuing theory in order to predict the delays as well as

the improvement in the delay. Table 5 summarizes the results of this section.

For the case of no crossovers, the expected delay is 7.4027 min/ac. However, simulation

once again had a higher delay, found to be 8.7364 min/ac. The reason for the discrepancy

is as discussed above in the two runway/heavy traffic study. The unlimited crossover case

sees a reduction in the delay as expected. The average delay from the simulation is 6.4245

min/ac with 65.7% of the traffic crossing over. Yet, the expected delay is 5.5834 min/ac.

Furthermore, one would expect the ratio of the delays to be about 0.7392 (Figure 6). Note

the behavior of the curve in Figure 6. The relative delay is increasing for most of the rush

period, before reaching a maximum, then beginning to decrease. This implies that the

delay for the three server queue is growing faster than the delay for a single server queue

after start-up. The delays in the single-server queue then begin to grow faster than for the

three-server queue. The ratio of the simulated delays is 0.7354, and our simulations agree

with this value. A 26% delay reduction is realized by allowing the aircraft to land on the

first runway that becomes available for it.

The final strategy employed is to land the heavy and small aircraft on separate runways

and---to land the large aircraft on whichever runway its delay is the smallest. The delay

calculated from the simulation is 4.9582 min/ac, with 66.78% of the aircraft switching

runways. As with the two runway set-up with heavy traffic, this instance is similar in

terms of relative performance. The separation of the weight classes removes some of the

components of the separation matrix that result in large delays. This is even more important

when the traffic is heavy, since bunching is widespread.
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5 Conclusions

Several methods for scheduling arrival aircraft to multiple runways are studied. We have

shown that the transient analysis of an M/D/n queue is accurate in predicting the average

delay per aircraft when the runway capacity is known. Furthermore, significant improve-

ments are realizable when one considers the arrival rate in choosing a runway allocation

strategy. The greatest reduction in delay for both the two and three runway cases for heavy

traffic are obtained by separating traffic such that the heavy and small weight classes do

not interact. For more moderate traffic, one may either split the traffic by weight class or

crossover when there is an improvement in delay. Light traffic simply is scheduled to the

preferred runway for the aircraft since the average separation is large enough that most

aircraft are likely to be expedited.
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